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Summary 
 

We analyzed the effects of software prefetching with and without exclusive ownership. Utilizing 
pthreads, OpenMP and OpenMPI, we attempted to demonstrate the potential contributions of 
using this prefetching technique. 
 

Background 
 

What is Prefetching? 
 

In short, prefetching is the ability to predict when data will be available to avoid the latency costs 
of memory.  

Consider a simple processor, similar to RISC-V, along with their latency times, that fetches, 
decodes, executes, loads/stores, and writes back. The total time to load data becomes a 
bottleneck in a lot of computation, and could reduce this processor’s critical path from 114ns to 
just 5ns if the memory had already been loaded. 

 

Prefetching can be seen in large cache block requests, hardware-controlled prefetching, or 
software-controlled prefetching, which is where our project focuses. As computer engineers, we 
can do several things to hide the effects of memory latency: the first is establish a cache which 
holds a subset of the data that we want to work on, next is optimizing and reordering code to fit 
within the cache to minimize data cache misses, after is create enough of a buffer in our 
out-of-order modern-day processor to hold any misses for loads and stores, then we must add the 
architecture of hardware prefetchers that can detect simple memory access patterns without 
giving up too much latency, last is insert software techniques that can help guide our hardware at 
a more sophisticated level. 
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Prefetching with and without Ownership 
 

Prefetching with ownership is telling the processor that it has an intent to write to the data that it 
is bringing into the cache. To understand why this is important, our scope from a single 
processor must be expanded to multi-core functionality. For clarity, our model is now a four-core 
computer with private L1 and L2 caches (private = only one core can access at a time, L1 & L2 = 
different levels of cache sizes) and a shared L3 cache (shared = all cores can access).  

This model will also follow a MESI cache coherence protocol.  
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If each processor maintains this protocol, then when the prefetch executes normally it will place 
the data into the shared state. If the prefetch fetches with intent to write, then it will be placed 
into the exclusive state. This one step can be incredibly useful and time efficient since the jump 
from an Exclusive state to a Modified state is quiet to the other processors and reduces 
contention on our bus. 

 

Determining Good Prefetching (Metrics) 
 

In order to design an effective prefetching technique, we have to learn what is worth analyzing. 

Definitions: 

- Possible = If addresses can be determined ahead of time 
- Coverage Factor = fraction of misses that are prefetched 
- Unnecessary = Data is already present in cache 
- Effective = Data is in the cache when later referenced 

 

In computer architecture, an evaluation for hardware prefetching depends on a set of simple 
metrics. 

1. Accuracy = Number of Useful prefetches / Total Number of Prefetching 
 *Useful meaning we are getting “Effective” prefetches 

 
2. Coverage = Total Number of Prefetches / Total Unique Accesses 

*This gives us our “Coverage Factor” 
 

3. Timeliness = Number of Prefetches Arriving on Time / Total Number of Prefetches 
*On time means prefetching by the time the instruction is called 
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Data Structures 

Our source code mainly came from modifying our pre-existing work from 15-418.  

The data structure that was fundamental to Homework 3 and Homework 4 for the class was the 
Quad tree. The Quad tree was something that we saw immediately as a place to optimize. This 
Quad tree diagram is taken from the homework. The data is continuously split into four subtrees 
and recursively called if there are more than a certain number of elements within that subtree. 

 

The data structure used for mandelbrot was a simpler output array, which merely maintained an 
element’s containment in a mandelbrot set. This array can be visualized to reveal the fractal 
patterns that the set mimics. 

     Mandelbrot Set Visualization  
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The Benefits and the Drawbacks 
 

When looking at how we define a good prefetcher, we can optimize every metric with the use of 
software prefetching. Because we now rely on the programmer to be smarter about where they 
want data to be loaded, it should almost always be accurate. The same reason for coverage, a 
programmer will only request the data it needs for the program run. Timeliness is more 
complicated because we don’t always know when the prefetcher will actually fetch the data, this 
is figured out with tuning, but not always guaranteed. 

The chance of zero latency could be a fundamental change to how processors operate, however 
multi-cored systems make software prefetching difficult. With any data that is modified, constant 
invalidations would be sent to other cores holding data, which could render our prefetching 
useless. There is also the additional potential benefit of Read-Modify-Write cases where 
processor asks for shareable copy then an exclusive copy. This reduces requests to 1 which 
potentially has the effect of cutting down half of all memory traffic. Which reduces contention. 

 

Workload 
 

The workload is ever changing and only heuristics about when to software prefetch and when to 
do so with or without ownership can be applied. However, exclusive prefetching is very 
amenable to SIMD execution because the data should never conflict with each other. 

 

Algorithms 
 

The mandelbrot algorithm determines inclusivity in the mandelbrot set based on a mathematical 
computation over a number of iterations. We attempted to improve the performance of the 
parallelized mandelbrot algorithm by requesting write access to the output array. Given that each 
index in the output array is only computed in one thread, there won’t exist contention by 
requesting exclusive access to the address. 

Our n-body simulation algorithm took a quad-tree structure to efficiently store and compute 
nearby neighbors such that gravity could be simulated over our set of particles. In this case, most 
data was considered read only and thus provided a great place to insert prefetching pragmas for 
each core to efficiently pull data from DRAM. Because this data is typically only shared, we can 
find that the MESI shared state will prevent the data from being consistently evicted from the 
cache. This algorithm should have a high ceiling of optimization due to prefetching given the 
locality of the data and the speed of each array access, such that we can hide memory latency 
through prefetching while computations are being done on previously accessed data. Here we 
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will be able to see the efficiency of write based prefetching as well due to the computation of the 
newParticles vector, which can be prefetched as the computation of the particle’s position is 
almost finalized in the inner loop. 

 

Approach 
 

Technologies 
 

Our main technologies were similar to the ones used in 15-418, OpenMP, OpenMPI, and 
Pthreads, with the addition of a simulator, Sniper. 

OpenMP is an API that can support multi-platform shared memory multiprocessing, while 
OpenMPI is a message passing interface between multiple computers. Pthreads help establish 
concurrency of our program by spawning new children threads to be mapped to different CPUs. 

Sniper is an x86 simulator that is able to simulate multi-core systems, but also allows us to 
simulate both OpenMP and OpenMPI with minimal extra setup. Sniper also provides statistic 
collection and different ways to modify the hardware prefetcher in x86. 

 

Mapping 
 

The problems from the homework are mapped similar to how they were in class, however with 
Sniper, one core is used to simulate many cores. With the addition of adding in prefetching, we 
can now see how different cores are contending for the data they are operating on. If there is not 
enough data to create logical boundaries and the prefetcher continues to bring the wrong data 
into the wrong core, then there is the possibility of many invalidations being sent, which would 
significantly reduce the timeliness and effectiveness of our prefetcher.  

For the other algorithms, the use of Pthreads allows for easy multicore mapping, with each child 
thread absorbing one processor.  

 

Optimization 
 

Our largest point of optimization and time was finding the correct simulator to match our 
specifications. Initially we wanted to use our past experience with the simulator Gem5. However 
this proved as a problem when trying to support our specific prefetching instructions and the use 
of OpenMP and OpenMPI because the version of Gem5 previously used wouldn’t support any of 
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these functionalities with its “Syscall Emulation” mode. The next option with Gem5 was to try to 
run in “Full System” mode which was a real-time execution of any given image. The “Full 
System” mode, however, was extremely lacking in documentation and resulted in multiple errors 
and multiple hours of futility. We then decided to use ZSim which should’ve allowed us the 
support that we needed, but ran into similar problems as Gem5. The saving grace that allowed 
for easy and simple simulation was when we discovered Sniper, which is a simulator that “allows 
one to perform timing simulations for both multi-program workloads and multi=threaded and 
shared-memory applications with 10s to 100+ cores.” 

Other optimizations that we made were relating to the source code. Software prefetching relies 
on Software Pipelining, which needs to be tweaked based on the processors memory latency. 
This requires a lot of fine tuning on where to place our prefetching blocks because the prefetch 
request must be made so many cycles before the memory access in order for the prefetch data to 
actually be used. 

 

Preexisting Code 
 

Preexisting code came from the Homework 1, 3, 4 from 15-418.  

Found here: 

Homework 1 - http://www.cs.cmu.edu/~418/assignment_writeups/asst1/asst1.pdf 

Homework 3 – http://www.cs.cmu.edu/~418/assignment_writeups/asst3/assignment3-f19.pdf 

Homework 4 - http://www.cs.cmu.edu/~418/assignment_writeups/asst4/assignment4-f19.pdf 
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Results 
 

Goals Attained 
 

Our original goals when we first started the project were ambitious, but our updated goals were 
well within our reach and we are able to see the differences between each benchmark. These 
goals were not as drastic as we had hoped, and it’s possible that the discrepancies between runs 
could just be discrepancies. We did not see as significant of an improvement as planned, but the 
reasons for this will be discussed in our Limitations. 

Performance 
 

We want to analyze the performance based off of our three metrics laid out here. 

Accuracy should be close to 100%, coverage should be as large as possible, and timeliness 
should never be as large as possible since we are able to command exactly when prefetches 
should happen. 

 

Setup 
 

Code setup:  

In order to include software prefetching in our code, we used the GNU extension 
__builtin_prefetch(); This extension takes in an address as a main argument, which is the target 
address to prefetch, along with two optional arguments. The first of these is (r)ead/(w)rite (input 
as 0/1, respectively). This argument specifies whether to prefetch the data in an exclusive state or 
shared only state, depending on whether the data is expected to be written to. The other argument 
to __builtin_prefetch is the temporal locality, which can range from 0 to 3. Higher values of 
temporal locality indicate to the compiler that the data should be maintained in all cache levels if 
possible, while a locality of 0 indicates that the data should be discarded once accessed. 

In order to effectively implement these prefetches, we used a software pipeline with a prolog and 
steady state. These allow the CPU to access the necessary prefetches for the first iteration of the 
algorithm prior to computing. In the steady state, the CPU prefetches the data necessary for the 
next iteration of the algorithm. As we were simply analyzing the difference between write based 
prefetching versus read based prefetches we didn’t optimize the prefetcher with an epilog state, 
which would reduce the overhead caused by our prefetches. This is a modification that could be 
made in the future to analyze further optimization. 
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In order for the compiler to refer to the __builtin_prefetch(); optional arguments, we used the 
following command to compile our programs: 

g++ -O3 -mprfchw file_name.cpp -c 

Sniper setup: 

Our model for sniper is based off the configuration file of Intel’s Xeon Gainestown and Intel’s i7 
Nehalem. 

 

 

Disclaimer:  Sniper has some discrepancies when it comes to cache statistics. From the website 
it says, 

“The cache access rates should look comparable to real hardware, but the miss rate can in some 
cases be rather different. The reason for this is that the overlapping misses in Sniper are 
counted as hits, while on real hardware they would count as cache misses. Internally, 
Sniper's memory subsystem completes each access, gets the result immediately, and uses 
a queuing model to determine contention. Therefore, a miss in real hardware would be a 
hit in Sniper.” 

We do not expect our results to be far off from our predictions, but this could be the reason why 
our performance for certain statistics are better/worse. 
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Data 
 

Our data will be representing statistics of total runtime, L1-L3 cache access, misses, miss rate, 
and misses per kilo-instructions, DRAM number of access and latency, and cache coherence 
traffic from DRAM. Sniper provides these statistics core-based, but for the purpose of 
condensing this data we will be presenting it as an average over the cores. We also took a look at 
the different McPat statistics. 

Our data looked extremely similar between runs of OpenMP, OpenMPI, and Pthreads. This is an 
example of how similar the runs were with OpenMP.  

 

 

12 
 



 

13 
 



 

McPat Statistics 

 Power - OpenMP Energy - OpenMP Energy %- OpenMP 

Core-Core 13.55 W 1.24 J 28.99 

Core-ifetch 3.12 W .28 J 6.68 

Core-Mem 2.25 W .35 J 4.82 

I cache 2.10 W .19 J 4.5 

D cache 4.90 W .45 J 10.49 

L2 1.72 W .16 J 3.68 

L3 3.37 W .31 J 7.22 

DRAM 4.27 W .39 J 9.14 

Core 30.32 W 2.77 J 64.9 

Cache 12.10 W 1.10 J 25.0 

Total 46.72 W 4.26 J 100 
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Different Sized Workloads 
 

The size of the problem theoretically helps us in this case, but we have not seen the 
improvements that we were hoping for. If, in theory, every data load is already present in the 
cache, then we should be able to see extreme amounts of improvement. This improvement would 
be maintained as the size of the problem increases, unless the amount of data needed in the cache 
at any point in time were to exceed the bounds of the cache size. We would’ve been able to move 
on to further analysis of larger workloads had we been able to find the general improvement with 
the baseline algorithm that we were looking for. As we continue to look into the subject in the 
future and when we pinpoint the sources of the errors and limitations of our code, we will move 
forward with more tests and performance metrics for different workloads to analyze whether 
there is a limit to the effectiveness of prefetching with these algorithms on larger workloads. 

 

Limitations 
 

Some of the limitations to this project’s success include the prevalence of hardware prefetching. 
We were unable to determine the cause for the lack of difference in our runs with and without 
prefetching. Whether it was stepping through the code using gdb to ensure that prefetch 
instructions were being read or analyzing the disassembled executable files to determine if the 
prefetch commands were being used by the compiler, we could not find a reason for the lack of 
computational difference. Another possibility is that the multi-threading functionality of our base 
programs already hid the prefetching benefits by switching contexts when a cache miss was hit. 
Both in Sniper and in the GHC machines, once the program counter reaches the instruction for 
the prefetch it could read that as a cache miss, given that the prefetch is accessing DRAM 
memory. In an attempt to provide speedup, the OS may decide at this point to context switch to 
another thread or task to increase the performance of the program. This doesn’t make as much 
sense as a reason for the lack of speedup and performance of the shared memory model as the 
different processors should not follow the same protocol. On Sniper, this makes sense because 
the simulator uses a single core machine to simulate a multi core program. 

Deeper Analysis 
 

Our project can be broken down into different time sections depending on the algorithm we are 
running. For example, mandelbrot is difficult to break down into subsections given that the entire 
algorithm is simply a computation of the output array. However, when it comes to algorithms 
like n-body simulation, like we saw in assignments 3 and 4 we can break down the code into 
separate steps including the simulation step and building of the quadTree data structure. Here we 
attempted to increase the performance of both of these sections of code, however, both in our 
simulation and running our program on the GHC clusters we were unable to see any difference in 
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computational efficiency in either simulateStep or in buildQuadTree. The failure to achieve 
speedup is discussed further in the Reflection portion of the report.  

 

Choice of Machine Target 
 

Software prefetching is only useful for CPUs as GPUs and other smaller core systems don’t use 
the same cache hierarchy, so we are happy with our choice. Hardware prefetching is slightly 
different as it can be useful to improve both computational and energy efficiency within GPU 
programs, but that wasn’t the focus of our research. 

 

Reflection 
 

When we began the project we believed we would be able to get incredible amounts of speedup 
and reduce cache misses significantly, but we didn’t. We believe there are a couple reasons for 
this as well.  

1. Software Prefetching is a hint. 

Software prefetching is a good idea in theory, but in reality, only shows itself as a hint to 
the processor. Even with accurate temporal locality and timeliness, we could not see our 
results improve.  

2. The simulator is not perfect. 

We ended up with Sniper as our simulator of choice, but cannot be entirely sure that it is 
actually executing our prefetching instructions. We have looked through the disassembly 
of our object files and have seen promising results, but it is not reflected with what the 
data shows. 

3. We underestimated the hardware prefetcher/did not outthink it. 

We assumed that a basic implementation would suffice for improvements, but it’s 
entirely possible that our implementations were outshined by the hardware prefetcher. 
We did not expand too far out into complex access patterns and were trying to show the 
difference between exclusive and non-exclusive prefetching. We did find one way that 
this could be circumvented, but did not yet attempt the approach. The approach is to 
exploit fenced operations and mutually exclusive locked memory references. We predict 
that since threads and cores can be waiting during these two operations, we can load the 
data before it is accessed with software prefetching. 

Additionally, this project included the steep learning curve of setting up a full-system simulation 
that could model the logical flow of the program through the cores, to the cache, to the DRAM. 
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A large amount of time was spent attempting to set up full-system simulators using both gem5 
and zsim that we were unable to bring to fruition. We didn’t believe that our performance 
metrics using simply timing on the GHC computers were relevant, given that our prefetches were 
properly laid out both in the code and in the assembly of disassembled executables. We were 
able to notice the difference between the inclusion of prefetchw and other prefetch assembly 
calls, and assumed that they would provide at least some difference in the simulator. Our initial 
assumptions on why these metrics were not providing speedup on the GHC machines were that 
hardware prefetching was overriding or already performing the software prefetches we were 
inserting. In the least, we expected the prefetch pragmas we inserted to cause a slowdown in the 
code, if only due to overhead. There still remains investigation to be done as to why there is no 
difference in performance, mainly because our prefetch pragmas were being correctly inputted 
by the compiler into the executable.  

 

Future of Project 
 

We had several reach goals for this project that we were unable to get to due to the steep learning 
curve to even get started with the project. Software prefetching is not an intuitive concept with 
having to request data way before it's actually accessed, so we would still like to see a machine 
learning based model of prefetching insertion. Unfortunately this is outside of the scope of this 
class and both of our experiences with the knowledge of machine learning and compilers, but we 
believe that this automatic insertion could be extremely helpful when prefetching for complex 
data structures that hardware cannot detect or would take too long to detect. The current scope of 
the project only followed semi-static array accesses in n-body simulation and mandelbrot 
generation, but in other algorithms with more dynamic memory access it would be beneficial to 
have an automated best-fit prefetch insertion algorithm/machine learning model. 
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