

Effects of Software Prefetching
Pragmas with and without Exclusive

Ownership on Cache Efficiency
John Paul Harriman and Alexandre Goberna

15-418 Final Project Fall 2019
https://johnpaulharriman.github.io

1

https://johnpaulharriman.github.io/resources.html

Table of Contents
Summary 3

Background 3

What is Prefetching? 3

Prefetching with and without Ownership 4

Determining Good Prefetching (Metrics) 5

Data Structures 6

The Benefits and the Drawbacks 7

Workload 7

Algorithms 7

Approach 8

Technologies 8

Mapping 8

Optimization 8

Preexisting Code 9

Results 10

Goals Attained 10

Performance 10

Setup 10

Data 12

Different Sized Workloads 15

Limitations 15

Deeper Analysis 15

Choice of Machine Target 16

Reflection 16

Future of Project 17

References 18

List of Work and Distribution 19

2

Summary

We analyzed the effects of software prefetching with and without exclusive ownership. Utilizing
pthreads, OpenMP and OpenMPI, we attempted to demonstrate the potential contributions of
using this prefetching technique.

Background

What is Prefetching?

In short, prefetching is the ability to predict when data will be available to avoid the latency costs
of memory.

Consider a simple processor, similar to RISC-V, along with their latency times, that fetches,
decodes, executes, loads/stores, and writes back. The total time to load data becomes a
bottleneck in a lot of computation, and could reduce this processor’s critical path from 114ns to
just 5ns if the memory had already been loaded.

Prefetching can be seen in large cache block requests, hardware-controlled prefetching, or
software-controlled prefetching, which is where our project focuses. As computer engineers, we
can do several things to hide the effects of memory latency: the first is establish a cache which
holds a subset of the data that we want to work on, next is optimizing and reordering code to fit
within the cache to minimize data cache misses, after is create enough of a buffer in our
out-of-order modern-day processor to hold any misses for loads and stores, then we must add the
architecture of hardware prefetchers that can detect simple memory access patterns without
giving up too much latency, last is insert software techniques that can help guide our hardware at
a more sophisticated level.

3

Prefetching with and without Ownership

Prefetching with ownership is telling the processor that it has an intent to write to the data that it
is bringing into the cache. To understand why this is important, our scope from a single
processor must be expanded to multi-core functionality. For clarity, our model is now a four-core
computer with private L1 and L2 caches (private = only one core can access at a time, L1 & L2 =
different levels of cache sizes) and a shared L3 cache (shared = all cores can access).

This model will also follow a MESI cache coherence protocol.

4

If each processor maintains this protocol, then when the prefetch executes normally it will place
the data into the shared state. If the prefetch fetches with intent to write, then it will be placed
into the exclusive state. This one step can be incredibly useful and time efficient since the jump
from an Exclusive state to a Modified state is quiet to the other processors and reduces
contention on our bus.

Determining Good Prefetching (Metrics)

In order to design an effective prefetching technique, we have to learn what is worth analyzing.

Definitions:

- Possible = If addresses can be determined ahead of time
- Coverage Factor = fraction of misses that are prefetched
- Unnecessary = Data is already present in cache
- Effective = Data is in the cache when later referenced

In computer architecture, an evaluation for hardware prefetching depends on a set of simple
metrics.

1. Accuracy = Number of Useful prefetches / Total Number of Prefetching
 *Useful meaning we are getting “Effective” prefetches

2. Coverage = Total Number of Prefetches / Total Unique Accesses

*This gives us our “Coverage Factor”

3. Timeliness = Number of Prefetches Arriving on Time / Total Number of Prefetches
*On time means prefetching by the time the instruction is called

5

Data Structures

Our source code mainly came from modifying our pre-existing work from 15-418.

The data structure that was fundamental to Homework 3 and Homework 4 for the class was the
Quad tree. The Quad tree was something that we saw immediately as a place to optimize. This
Quad tree diagram is taken from the homework. The data is continuously split into four subtrees
and recursively called if there are more than a certain number of elements within that subtree.

The data structure used for mandelbrot was a simpler output array, which merely maintained an
element’s containment in a mandelbrot set. This array can be visualized to reveal the fractal
patterns that the set mimics.

 Mandelbrot Set Visualization

6

The Benefits and the Drawbacks

When looking at how we define a good prefetcher, we can optimize every metric with the use of
software prefetching. Because we now rely on the programmer to be smarter about where they
want data to be loaded, it should almost always be accurate. The same reason for coverage, a
programmer will only request the data it needs for the program run. Timeliness is more
complicated because we don’t always know when the prefetcher will actually fetch the data, this
is figured out with tuning, but not always guaranteed.

The chance of zero latency could be a fundamental change to how processors operate, however
multi-cored systems make software prefetching difficult. With any data that is modified, constant
invalidations would be sent to other cores holding data, which could render our prefetching
useless. There is also the additional potential benefit of Read-Modify-Write cases where
processor asks for shareable copy then an exclusive copy. This reduces requests to 1 which
potentially has the effect of cutting down half of all memory traffic. Which reduces contention.

Workload

The workload is ever changing and only heuristics about when to software prefetch and when to
do so with or without ownership can be applied. However, exclusive prefetching is very
amenable to SIMD execution because the data should never conflict with each other.

Algorithms

The mandelbrot algorithm determines inclusivity in the mandelbrot set based on a mathematical
computation over a number of iterations. We attempted to improve the performance of the
parallelized mandelbrot algorithm by requesting write access to the output array. Given that each
index in the output array is only computed in one thread, there won’t exist contention by
requesting exclusive access to the address.

Our n-body simulation algorithm took a quad-tree structure to efficiently store and compute
nearby neighbors such that gravity could be simulated over our set of particles. In this case, most
data was considered read only and thus provided a great place to insert prefetching pragmas for
each core to efficiently pull data from DRAM. Because this data is typically only shared, we can
find that the MESI shared state will prevent the data from being consistently evicted from the
cache. This algorithm should have a high ceiling of optimization due to prefetching given the
locality of the data and the speed of each array access, such that we can hide memory latency
through prefetching while computations are being done on previously accessed data. Here we

7

will be able to see the efficiency of write based prefetching as well due to the computation of the
newParticles vector, which can be prefetched as the computation of the particle’s position is
almost finalized in the inner loop.

Approach

Technologies

Our main technologies were similar to the ones used in 15-418, OpenMP, OpenMPI, and
Pthreads, with the addition of a simulator, Sniper.

OpenMP is an API that can support multi-platform shared memory multiprocessing, while
OpenMPI is a message passing interface between multiple computers. Pthreads help establish
concurrency of our program by spawning new children threads to be mapped to different CPUs.

Sniper is an x86 simulator that is able to simulate multi-core systems, but also allows us to
simulate both OpenMP and OpenMPI with minimal extra setup. Sniper also provides statistic
collection and different ways to modify the hardware prefetcher in x86.

Mapping

The problems from the homework are mapped similar to how they were in class, however with
Sniper, one core is used to simulate many cores. With the addition of adding in prefetching, we
can now see how different cores are contending for the data they are operating on. If there is not
enough data to create logical boundaries and the prefetcher continues to bring the wrong data
into the wrong core, then there is the possibility of many invalidations being sent, which would
significantly reduce the timeliness and effectiveness of our prefetcher.

For the other algorithms, the use of Pthreads allows for easy multicore mapping, with each child
thread absorbing one processor.

Optimization

Our largest point of optimization and time was finding the correct simulator to match our
specifications. Initially we wanted to use our past experience with the simulator Gem5. However
this proved as a problem when trying to support our specific prefetching instructions and the use
of OpenMP and OpenMPI because the version of Gem5 previously used wouldn’t support any of

8

these functionalities with its “Syscall Emulation” mode. The next option with Gem5 was to try to
run in “Full System” mode which was a real-time execution of any given image. The “Full
System” mode, however, was extremely lacking in documentation and resulted in multiple errors
and multiple hours of futility. We then decided to use ZSim which should’ve allowed us the
support that we needed, but ran into similar problems as Gem5. The saving grace that allowed
for easy and simple simulation was when we discovered Sniper, which is a simulator that “allows
one to perform timing simulations for both multi-program workloads and multi=threaded and
shared-memory applications with 10s to 100+ cores.”

Other optimizations that we made were relating to the source code. Software prefetching relies
on Software Pipelining, which needs to be tweaked based on the processors memory latency.
This requires a lot of fine tuning on where to place our prefetching blocks because the prefetch
request must be made so many cycles before the memory access in order for the prefetch data to
actually be used.

Preexisting Code

Preexisting code came from the Homework 1, 3, 4 from 15-418.

Found here:

Homework 1 - http://www.cs.cmu.edu/~418/assignment_writeups/asst1/asst1.pdf

Homework 3 – http://www.cs.cmu.edu/~418/assignment_writeups/asst3/assignment3-f19.pdf

Homework 4 - http://www.cs.cmu.edu/~418/assignment_writeups/asst4/assignment4-f19.pdf

9

http://www.cs.cmu.edu/~418/assignment_writeups/asst1/asst1.pdf
http://www.cs.cmu.edu/~418/assignment_writeups/asst3/assignment3-f19.pdf
http://www.cs.cmu.edu/~418/assignment_writeups/asst4/assignment4-f19.pdf

Results

Goals Attained

Our original goals when we first started the project were ambitious, but our updated goals were
well within our reach and we are able to see the differences between each benchmark. These
goals were not as drastic as we had hoped, and it’s possible that the discrepancies between runs
could just be discrepancies. We did not see as significant of an improvement as planned, but the
reasons for this will be discussed in our Limitations.

Performance

We want to analyze the performance based off of our three metrics laid out here.

Accuracy should be close to 100%, coverage should be as large as possible, and timeliness
should never be as large as possible since we are able to command exactly when prefetches
should happen.

Setup

Code setup:

In order to include software prefetching in our code, we used the GNU extension
__builtin_prefetch(); This extension takes in an address as a main argument, which is the target
address to prefetch, along with two optional arguments. The first of these is (r)ead/(w)rite (input
as 0/1, respectively). This argument specifies whether to prefetch the data in an exclusive state or
shared only state, depending on whether the data is expected to be written to. The other argument
to __builtin_prefetch is the temporal locality, which can range from 0 to 3. Higher values of
temporal locality indicate to the compiler that the data should be maintained in all cache levels if
possible, while a locality of 0 indicates that the data should be discarded once accessed.

In order to effectively implement these prefetches, we used a software pipeline with a prolog and
steady state. These allow the CPU to access the necessary prefetches for the first iteration of the
algorithm prior to computing. In the steady state, the CPU prefetches the data necessary for the
next iteration of the algorithm. As we were simply analyzing the difference between write based
prefetching versus read based prefetches we didn’t optimize the prefetcher with an epilog state,
which would reduce the overhead caused by our prefetches. This is a modification that could be
made in the future to analyze further optimization.

10

In order for the compiler to refer to the __builtin_prefetch(); optional arguments, we used the
following command to compile our programs:

g++ -O3 -mprfchw file_name.cpp -c

Sniper setup:

Our model for sniper is based off the configuration file of Intel’s Xeon Gainestown and Intel’s i7
Nehalem.

Disclaimer: Sniper has some discrepancies when it comes to cache statistics. From the website
it says,

“The cache access rates should look comparable to real hardware, but the miss rate can in some
cases be rather different. The reason for this is that the overlapping misses in Sniper are
counted as hits, while on real hardware they would count as cache misses. Internally,
Sniper's memory subsystem completes each access, gets the result immediately, and uses
a queuing model to determine contention. Therefore, a miss in real hardware would be a
hit in Sniper.”

We do not expect our results to be far off from our predictions, but this could be the reason why
our performance for certain statistics are better/worse.

11

Data

Our data will be representing statistics of total runtime, L1-L3 cache access, misses, miss rate,
and misses per kilo-instructions, DRAM number of access and latency, and cache coherence
traffic from DRAM. Sniper provides these statistics core-based, but for the purpose of
condensing this data we will be presenting it as an average over the cores. We also took a look at
the different McPat statistics.

Our data looked extremely similar between runs of OpenMP, OpenMPI, and Pthreads. This is an
example of how similar the runs were with OpenMP.

12

13

McPat Statistics

 Power - OpenMP Energy - OpenMP Energy %- OpenMP

Core-Core 13.55 W 1.24 J 28.99

Core-ifetch 3.12 W .28 J 6.68

Core-Mem 2.25 W .35 J 4.82

I cache 2.10 W .19 J 4.5

D cache 4.90 W .45 J 10.49

L2 1.72 W .16 J 3.68

L3 3.37 W .31 J 7.22

DRAM 4.27 W .39 J 9.14

Core 30.32 W 2.77 J 64.9

Cache 12.10 W 1.10 J 25.0

Total 46.72 W 4.26 J 100

14

Different Sized Workloads

The size of the problem theoretically helps us in this case, but we have not seen the
improvements that we were hoping for. If, in theory, every data load is already present in the
cache, then we should be able to see extreme amounts of improvement. This improvement would
be maintained as the size of the problem increases, unless the amount of data needed in the cache
at any point in time were to exceed the bounds of the cache size. We would’ve been able to move
on to further analysis of larger workloads had we been able to find the general improvement with
the baseline algorithm that we were looking for. As we continue to look into the subject in the
future and when we pinpoint the sources of the errors and limitations of our code, we will move
forward with more tests and performance metrics for different workloads to analyze whether
there is a limit to the effectiveness of prefetching with these algorithms on larger workloads.

Limitations

Some of the limitations to this project’s success include the prevalence of hardware prefetching.
We were unable to determine the cause for the lack of difference in our runs with and without
prefetching. Whether it was stepping through the code using gdb to ensure that prefetch
instructions were being read or analyzing the disassembled executable files to determine if the
prefetch commands were being used by the compiler, we could not find a reason for the lack of
computational difference. Another possibility is that the multi-threading functionality of our base
programs already hid the prefetching benefits by switching contexts when a cache miss was hit.
Both in Sniper and in the GHC machines, once the program counter reaches the instruction for
the prefetch it could read that as a cache miss, given that the prefetch is accessing DRAM
memory. In an attempt to provide speedup, the OS may decide at this point to context switch to
another thread or task to increase the performance of the program. This doesn’t make as much
sense as a reason for the lack of speedup and performance of the shared memory model as the
different processors should not follow the same protocol. On Sniper, this makes sense because
the simulator uses a single core machine to simulate a multi core program.

Deeper Analysis

Our project can be broken down into different time sections depending on the algorithm we are
running. For example, mandelbrot is difficult to break down into subsections given that the entire
algorithm is simply a computation of the output array. However, when it comes to algorithms
like n-body simulation, like we saw in assignments 3 and 4 we can break down the code into
separate steps including the simulation step and building of the quadTree data structure. Here we
attempted to increase the performance of both of these sections of code, however, both in our
simulation and running our program on the GHC clusters we were unable to see any difference in

15

computational efficiency in either simulateStep or in buildQuadTree. The failure to achieve
speedup is discussed further in the Reflection portion of the report.

Choice of Machine Target

Software prefetching is only useful for CPUs as GPUs and other smaller core systems don’t use
the same cache hierarchy, so we are happy with our choice. Hardware prefetching is slightly
different as it can be useful to improve both computational and energy efficiency within GPU
programs, but that wasn’t the focus of our research.

Reflection

When we began the project we believed we would be able to get incredible amounts of speedup
and reduce cache misses significantly, but we didn’t. We believe there are a couple reasons for
this as well.

1. Software Prefetching is a hint.

Software prefetching is a good idea in theory, but in reality, only shows itself as a hint to
the processor. Even with accurate temporal locality and timeliness, we could not see our
results improve.

2. The simulator is not perfect.

We ended up with Sniper as our simulator of choice, but cannot be entirely sure that it is
actually executing our prefetching instructions. We have looked through the disassembly
of our object files and have seen promising results, but it is not reflected with what the
data shows.

3. We underestimated the hardware prefetcher/did not outthink it.

We assumed that a basic implementation would suffice for improvements, but it’s
entirely possible that our implementations were outshined by the hardware prefetcher.
We did not expand too far out into complex access patterns and were trying to show the
difference between exclusive and non-exclusive prefetching. We did find one way that
this could be circumvented, but did not yet attempt the approach. The approach is to
exploit fenced operations and mutually exclusive locked memory references. We predict
that since threads and cores can be waiting during these two operations, we can load the
data before it is accessed with software prefetching.

Additionally, this project included the steep learning curve of setting up a full-system simulation
that could model the logical flow of the program through the cores, to the cache, to the DRAM.

16

A large amount of time was spent attempting to set up full-system simulators using both gem5
and zsim that we were unable to bring to fruition. We didn’t believe that our performance
metrics using simply timing on the GHC computers were relevant, given that our prefetches were
properly laid out both in the code and in the assembly of disassembled executables. We were
able to notice the difference between the inclusion of prefetchw and other prefetch assembly
calls, and assumed that they would provide at least some difference in the simulator. Our initial
assumptions on why these metrics were not providing speedup on the GHC machines were that
hardware prefetching was overriding or already performing the software prefetches we were
inserting. In the least, we expected the prefetch pragmas we inserted to cause a slowdown in the
code, if only due to overhead. There still remains investigation to be done as to why there is no
difference in performance, mainly because our prefetch pragmas were being correctly inputted
by the compiler into the executable.

Future of Project

We had several reach goals for this project that we were unable to get to due to the steep learning
curve to even get started with the project. Software prefetching is not an intuitive concept with
having to request data way before it's actually accessed, so we would still like to see a machine
learning based model of prefetching insertion. Unfortunately this is outside of the scope of this
class and both of our experiences with the knowledge of machine learning and compilers, but we
believe that this automatic insertion could be extremely helpful when prefetching for complex
data structures that hardware cannot detect or would take too long to detect. The current scope of
the project only followed semi-static array accesses in n-body simulation and mandelbrot
generation, but in other algorithms with more dynamic memory access it would be beneficial to
have an automated best-fit prefetch insertion algorithm/machine learning model.

17

References
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f19/www/lectures/20_prefetching.
pdf

https://stackoverflow.com/questions/30003361/difference-between-prefetch-for-read-or-write

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

https://stackoverflow.com/questions/40513280/what-is-the-effect-of-second-argument-in-builtin-
prefetch

https://users.elis.ugent.be/~leeckhou/papers/sc11.pdf

https://www.felixcloutier.com/x86/prefetchw

https://www.archive.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-f
all11-lecture24-prefetching-afterlecture.pdf

https://c9x.me/x86/html/file_module_x86_id_252.html

http://snipersim.org/documents/sniper-manual.pdf

http://www.gem5.org/docs/html/index.html

http://www.gem5.org/docs/html/index.html

https://ieeexplore.ieee.org/document/752654

18

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f19/www/lectures/20_prefetching.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15418-f19/www/lectures/20_prefetching.pdf
https://stackoverflow.com/questions/30003361/difference-between-prefetch-for-read-or-write
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://stackoverflow.com/questions/40513280/what-is-the-effect-of-second-argument-in-builtin-prefetch
https://stackoverflow.com/questions/40513280/what-is-the-effect-of-second-argument-in-builtin-prefetch
https://users.elis.ugent.be/~leeckhou/papers/sc11.pdf
https://www.felixcloutier.com/x86/prefetchw
https://www.archive.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture24-prefetching-afterlecture.pdf
https://www.archive.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture24-prefetching-afterlecture.pdf
https://c9x.me/x86/html/file_module_x86_id_252.html
http://snipersim.org/documents/sniper-manual.pdf
http://www.gem5.org/docs/html/index.html
http://www.gem5.org/docs/html/index.html
https://ieeexplore.ieee.org/document/752654

List of Work and Distribution

John Paul Harriman – 55%

- Heavily researched and looked into different simulators for multi-core programs

- Set up the simulator and virtual machine in which to run Sniper

- Performed code tests

- Provided background details and analyses for the report, on respective sections

Alex Goberna – 45%

- Researched different means of inserting prefetching code and architecture-specific
implementations of prefetching

- Modified assignment code to include prefetching pragmas relevant to gcc/g++

- Performed code tests

- Provided background details and analyses for the report, on respective sections

19

